ÌâÄ¿ÄÚÈÝ
¶¨Ò壺Èô¶ÔÓÚ¸ø¶¨Çø¼äDÄÚÈÎÒâµÄʵÊýx1ºÍx2¶¼ÓÐf(
)¡Ý
[f(x1)+f(x2)]£¬Ôò³Æº¯Êýf(x)ÊÇÇø¼äDÉϵÄÉÏ͹º¯Êý¡£ÉÏ͹º¯ÊýÓÐÈçϵÄÐÔÖÊ£º
ÈôÔÚÉÏ͹º¯Êýf(x)µÄͼÏóÉÏÒÀ´ÎÈ¡n¸ö(n¡Ý3)µãP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡£¬Pn£¨xn£¬yn£©£¬Ôò͹n±ßµ½P1P2P3¡PnµÄÉúÐÄG£¨
£¬
£©±ØÔÚº¯Êýy=f(x)µÄͼÏóÏ·½»òͼÏóÉÏ¡£
ÔËÓÃÉÏÊö¶¨Òå»òÐÔÖÊÖ¤Ã÷¡£
£¨1£©f(x)=lgxÔÚÇø¼ä£¨0£¬+¡Þ£©ÉÏÊÇÉÏ͹º¯Êý£»
£¨2£©Éèx1£¬x2£¬¡£¬xnΪÕýʵÊý£¬Ôò
¡Ý
¡£
½âÎö£º
Ö¤Ã÷£º£¨1£©Éèx1£¬x2£¬¡£¬xnΪÕýʵÊý£¬Ôò f( =1g =1g =1g ¡ßx1£¬x2£¬¡£¬xnΪÕýʵÊý£¬ ¡àx1+x2¡Ý2 ÓÖy=f(x)ÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬¡àlg( ¡àf( ¸ù¾Ý¶¨Ò壬º¯Êýy=1gxÊÇÇø¼ä£¨0£¬+¡Þ£©ÉϵÄÉÏ͹º¯Êý¡£ £¨2£©ÓÉ£¨1£©Öª£¬f(x)=1gxÔÚÇø¼ä£¨0£¬+¡Þ£©ÉÏÊÇÉÏ͹º¯Êý¡£ ÉèP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡£¬Pn£¨xn£¬yn£©£¬ÒÀ´ÎÊÇÉÏ͹y=1gxÉϵÄn¸ö£¨n¡Ý3£©µã£¬¸ù¾ÝÉÏ͹º¯ÊýµÄÐÔÖÊ£¬ÓÐ f( ¼´1g Ò༴1g ÒòΪy=1gxÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬ ËùÒÔ |