ÌâÄ¿ÄÚÈÝ

¶¨Ò壺Èô¶ÔÓÚ¸ø¶¨Çø¼äDÄÚÈÎÒâµÄʵÊýx1ºÍx2¶¼ÓÐf()¡Ý[f(x1)+f(x2)]£¬Ôò³Æº¯Êýf(x)ÊÇÇø¼äDÉϵÄÉÏ͹º¯Êý¡£ÉÏ͹º¯ÊýÓÐÈçϵÄÐÔÖÊ£º

ÈôÔÚÉÏ͹º¯Êýf(x)µÄͼÏóÉÏÒÀ´ÎÈ¡n¸ö(n¡Ý3)µãP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡­£¬Pn£¨xn£¬yn£©£¬Ôò͹n±ßµ½P1P2P3¡­PnµÄÉúÐÄG£¨£¬£©±ØÔÚº¯Êýy=f(x)µÄͼÏóÏ·½»òͼÏóÉÏ¡£

ÔËÓÃÉÏÊö¶¨Òå»òÐÔÖÊÖ¤Ã÷¡£

£¨1£©f(x)=lgxÔÚÇø¼ä£¨0£¬+¡Þ£©ÉÏÊÇÉÏ͹º¯Êý£»

£¨2£©Éèx1£¬x2£¬¡­£¬xnΪÕýʵÊý£¬Ôò¡Ý¡£

´ð°¸£º
½âÎö£º

Ö¤Ã÷£º£¨1£©Éèx1£¬x2£¬¡­£¬xnΪÕýʵÊý£¬Ôò

f()£­[f(x1)+f(x2)]

=1g£­(1gx1+1gx2)

=1g£­1g

=1g

¡ßx1£¬x2£¬¡­£¬xnΪÕýʵÊý£¬

¡àx1+x2¡Ý2£¬¼´¡Ý1¡£

ÓÖy=f(x)ÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬¡àlg()¡Ý0£¬

¡àf()¡Ý[f(x1)+f(x2)]£¬

¸ù¾Ý¶¨Ò壬º¯Êýy=1gxÊÇÇø¼ä£¨0£¬+¡Þ£©ÉϵÄÉÏ͹º¯Êý¡£

£¨2£©ÓÉ£¨1£©Öª£¬f(x)=1gxÔÚÇø¼ä£¨0£¬+¡Þ£©ÉÏÊÇÉÏ͹º¯Êý¡£

ÉèP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡­£¬Pn£¨xn£¬yn£©£¬ÒÀ´ÎÊÇÉÏ͹y=1gxÉϵÄn¸ö£¨n¡Ý3£©µã£¬¸ù¾ÝÉÏ͹º¯ÊýµÄÐÔÖÊ£¬ÓÐ

f()¡Ý[f(x1)+f(x2)+¡­+f(xn)]£¬

¼´1g¡Ý1g(x1x2¡­xn)£¬

Ò༴1g¡Ý1g¡£

ÒòΪy=1gxÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬

ËùÒÔ¡Ý¡£


Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø