题目内容

直线x+2y-2=0经过椭圆+=1(a>b>0)的一个焦点和一个顶点,则该椭圆的离心率等于   
【答案】分析:先根据椭圆的焦点在x轴上,又直线x+2y-2=0与x轴、y轴的交点分别为(2,0)、(0,1),它们分别是椭圆的焦点与顶点,进而可求得b和c,根据a=求得a,则椭圆的离心率可得.
解答:解:由题意知椭圆的焦点在x轴上,又直线x+2y-2=0与x轴、y轴的交点分别为(2,0)、(0,1),它们分别是椭圆的焦点与顶点,∴b=1,c=2,
∴a=,e==
故答案为
点评:本题主要考查了直线与过椭圆的关系,及求椭圆离心率的求法.属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网