题目内容

13.在△ABC中,已知cosA=$\frac{2\sqrt{5}}{5}$,C=$\frac{3π}{4}$,b=$\sqrt{2}$,若△ABC最大边的边长为$\sqrt{10}$,则△ABC的面积为1.

分析 由已知利用同角三角函数基本关系式可求sinA,进而利用三角形内角和定理,两角和的正弦函数公式可求sinB,利用正弦定理可求c的值,进而利用三角形面积公式即可计算得解.

解答 解:在△ABC中,∵cosA=$\frac{2\sqrt{5}}{5}$,
∴可得:sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{5}}{5}$,
又∵C=$\frac{3π}{4}$,b=$\sqrt{2}$,
∴sinB=sin(A+C)=sinAcosC+cosAsinC=$\frac{\sqrt{5}}{5}×(-\frac{\sqrt{2}}{2})+$$\frac{2\sqrt{5}}{5}$×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{10}}{10}$,
∴由$\frac{b}{sinB}=\frac{c}{sinC}$,可得:c=$\frac{bsinC}{sinB}$=$\frac{\sqrt{2}×\frac{\sqrt{2}}{2}}{\frac{\sqrt{10}}{10}}$=$\sqrt{10}$,
S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×\sqrt{2}×\sqrt{10}×$$\frac{\sqrt{5}}{5}$=1.
故答案为:1.

点评 本题主要考查了同角三角函数基本关系式,三角形内角和定理,两角和的正弦函数公式,正弦定理,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网