题目内容
若抛物线y2=2px(p>0)上一点P到焦点和抛物线的对称轴的距离分别为10和6,则p的值为( )
(A)2 (B)18
(C)2或18 (D)4或16
C
将边长为1 m的正三角形薄铁皮沿一条平行于某边的直线剪成两块,其中一块是梯形,记s=,则s的最小值是 .
抛物线y2=8x的焦点到准线的距离是( )
(A)1 (B)2 (C)4 (D)8
如图所示,抛物线C1:x2=4y,C2:x2=-2py(p>0).点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O).当x0=1-时,切线MA的斜率为-.
(1)求p的值;
(2)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).
已知抛物线y2=2px(p>0)的焦点F与双曲线-=1的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且|AK|=|AF|,则A点的横坐标为( )
(A)2 (B)3 (C)2 (D)4
若2x+2y=1,则x+y的取值范围是( )
(A)[0,2] (B)[-2,0](C)[-2,+∞) (D)(-∞,-2]
在平面直角坐标系xOy中,过坐标原点的一条直线与函数f(x)=的图象交于P,Q两点,则线段PQ长的最小值是 .
已知x>0,y>0,xy=x+2y,若xy≥m-2恒成立,则实数m的最大值是 .
已知向量a=(cos x,- ),b=(sin x,cos 2x),x∈R,设函数f(x)=a·b.
(1)求f(x)的最小正周期.
(2)求f(x)在[0,]上的最大值和最小值.