题目内容
(2012•陕西)已知等比数列{an}的公比为q=-
.
(1)若 a3=
,求数列{an}的前n项和;
(Ⅱ)证明:对任意k∈N+,ak,ak+2,ak+1成等差数列.
| 1 |
| 2 |
(1)若 a3=
| 1 |
| 4 |
(Ⅱ)证明:对任意k∈N+,ak,ak+2,ak+1成等差数列.
分析:(1)由 a3=
=a1q2,以及q=-
可得 a1=1,代入等比数列的前n项和公式,运算求得结果.
(Ⅱ)对任意k∈N+,化简2ak+2-(ak +ak+1)为 a1qk-1(2q2-q-1),把q=-
代入可得2ak+2-(ak +ak+1)=0,故 ak,ak+2,ak+1成等差数列.
| 1 |
| 4 |
| 1 |
| 2 |
(Ⅱ)对任意k∈N+,化简2ak+2-(ak +ak+1)为 a1qk-1(2q2-q-1),把q=-
| 1 |
| 2 |
解答:解:(1)由 a3=
=a1q2,以及q=-
可得 a1=1.
∴数列{an}的前n项和 sn=
=
=
.
(Ⅱ)证明:对任意k∈N+,2ak+2-(ak +ak+1)=2a1 qk+1-a1qk-1-a1qk=a1qk-1(2q2-q-1).
把q=-
代入可得2q2-q-1=0,故2ak+2-(ak +ak+1)=0,故 ak,ak+2,ak+1成等差数列.
| 1 |
| 4 |
| 1 |
| 2 |
∴数列{an}的前n项和 sn=
| a1(1-qn) |
| 1-q |
1×[1-(-
| ||
1+
|
2-2•(-
| ||
| 3 |
(Ⅱ)证明:对任意k∈N+,2ak+2-(ak +ak+1)=2a1 qk+1-a1qk-1-a1qk=a1qk-1(2q2-q-1).
把q=-
| 1 |
| 2 |
点评:本题主要考查等差关系的确定,等比数列的通项公式,等比数列的前n项和公式的应用,属于中档题.
练习册系列答案
相关题目