题目内容
设函数.
(1)求的最大值,并写出使取最大值时的集合;
(2)已知中,角的对边分别为,若,,求的最小值.
设函数是定义域为的奇函数.
(1)求值;
(2)若,试判断函数单调性,并求使不等式恒成立的的取值范围;
(3)若,设,在上的最小值为,求的值.
某几何体的三视图如图所示,则该几何体的体积为( )
A. B. C. D.
若的否命题是命题的逆否命题,则命题是命题的 ( )
A.逆命题 B.否命题 C.逆否命题 D.与是同一命题
已知椭圆的右焦点为,设A,B为椭圆上关于原点对称的两点,AF的中点为M,BF的中点为N,原点O在以线段MN为直径的圆上.若直线AB的斜率k满足,则椭圆离心率的取值范围为 .
如图,已知长方形中,,为的中点,将沿折起,使得平面平面.
(1)求证:;
(2)若点是线段上的一动点,问点在何位置时,二面角的余弦值为.
已知函数(,).
(1)若,求函数的单调增函数;
(2)若时,函数的最大值为,最小值为,求,的值.
埃及数学中有一个独特现象:除用一个单独的符号表示以外,其它分数都要写成若干个单分数和的形式.例如,可以这样理【解析】假定有两个面包,要平均分给5个人,如果每人,不够,每人,余,再将这分成5份,每人得,这样每人分得.形如的分数的分【解析】,,,按此规律, ; .
为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)
(1)求;
(2)若从高校B、C抽取的人中选2人作专题发言,求这二人都来自高校C的概率.