题目内容
设函数
,
,其中
为实数,若
在
上是单调减函数,且
在
上有最小值,求
的取值范围.
a∈(e,+∞)
试题分析:分别利用导数求出
解:令
考虑到f(x)的定义域为(0,+∞),故a>0,进而解得x>a-1,即f(x)在(a-1,+∞)上是单调减函数,
同理,f(x)在(0,a-1)上是单调增函数.
由于f(x)在(1,+∞)上是单调减函数,故(1,+∞)
令g'(x)=ex-a=0,得
当
又g(x)在(1,+∞)上有最小值,所以
即a>e.综上,有a∈(e,+∞).
考点:利用导数求函数的单调区间与最值.
练习册系列答案
相关题目