题目内容

设A,B,C是△ABC三个内角,且tanA,tanB是方程3x2-5x+1=0的两个实根,那么△ABC是( )
A.钝角三角形
B.锐角三角形
C.等腰直角三角形
D.以上均有可能
【答案】分析:首先分析题目tanA,tanB是方程3x2-5x+1=0的两个实根,可以猜想到用一元二次方程的根与系数的关系求解,然后根据C=π-(A+B)求得tanc,判断角的大小,即可得到答案.
解答:解:因为tanA,tanB是方程3x2-5x+1=0的两个实根
由韦达定理可得到:tanA+tanB=与  tanAtanB=>0
又因为C=π-(A+B),两边去=取正切得到
tanC=<0
故C为钝角,即三角形为钝角三角形.
故选A.
点评:此题主要考查一元二次方程根的分布与系数的关系,其中涉及到同角三角函数的正切关系式,属于综合性试题,计算量小为中档题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网