ÌâÄ¿ÄÚÈÝ
7£®ÈçͼÔÚ¡÷ABCÖУ¬$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{NC}$£¬PÊÇBNÉϵÄÒ»µã£¬Èô$\overrightarrow{AP}$=¦Ë$\overrightarrow{AB}$+$\frac{1}{5}$$\overrightarrow{AC}$£¬ÔòʵÊý¦ËµÄֵΪ£¨¡¡¡¡£©| A£® | $\frac{1}{5}$ | B£® | $\frac{2}{5}$ | C£® | $\frac{4}{5}$ | D£® | $\frac{3}{10}$ |
·ÖÎö Éè$\overrightarrow{BP}$=m$\overrightarrow{BN}$£¬ÎÒÃǿɽ«$\overrightarrow{AP}$±íʾΪ£¨1-m£©$\overrightarrow{AB}$+$\frac{m}{4}$$\overrightarrow{AC}$µÄÐÎʽ£¬¸ù¾ÝÆ½ÃæÏòÁ¿µÄ»ù±¾¶¨ÀíÎÒÃÇÒ×¹¹Ôì¹ØÓڦˣ¬mµÄ·½³Ì×飬½â·½³Ì×éºó¼´¿ÉµÃµ½¦ËµÄÖµ£®
½â´ð ½â£ºÉè$\overrightarrow{BP}$=m$\overrightarrow{BN}$£¬¡ß$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{NC}$£¬¡à$\overrightarrow{AN}$=$\frac{1}{4}$$\overrightarrow{AC}$£¬
¡à$\overrightarrow{AP}$=$\overrightarrow{AB}+\overrightarrow{BP}$=$\overrightarrow{AB}$+m$\overrightarrow{BN}$=$\overrightarrow{AB}$+m£¨$\overrightarrow{AN}-\overrightarrow{AB}$£©=£¨1-m£©$\overrightarrow{AB}$+m$\overrightarrow{AN}$=£¨1-m£©$\overrightarrow{AB}$+$\frac{m}{4}$$\overrightarrow{AC}$£¬
¡ß$\overrightarrow{AP}$=¦Ë$\overrightarrow{AB}$+$\frac{1}{5}$$\overrightarrow{AC}$£¬
¡à$\left\{\begin{array}{l}{1-m=¦Ë}\\{\frac{m}{4}=\frac{1}{5}}\end{array}\right.$£¬½âµÃ¦Ë=$\frac{1}{5}$£®
¹ÊÑ¡£ºA£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˵Ä֪ʶµãÊÇÃæÏòÁ¿µÄ»ù±¾¶¨Àí¼°ÆäÒâÒ壬½â´ð±¾ÌâµÄ¹Ø¼üÊǸù¾ÝÃæÏòÁ¿µÄ»ù±¾¶¨Àí¹¹Ôì¹ØÓڦˣ¬mµÄ·½³Ì×飬ÊôÓÚÖеµÌ⣮
¢ÙÈôÀâÖù±»Ò»Æ½ÃæËù½Ø£¬Ôò·Ö³ÉµÄÁ½²¿·Ö²»Ò»¶¨ÊÇÀâÖù£»
¢ÚÓÐÁ½¸öÃæÆ½ÐУ¬ÆäÓà¸÷Ãæ¶¼ÊÇÌÝÐεļ¸ºÎÌå½ÐÀą̂£»
¢ÛÓÃÒ»¸öÆ½ÃæÈ¥½ØÔ²×¶£¬µ×ÃæºÍ½ØÃæÖ®¼äµÄ²¿·Ö×é³ÉµÄ¼¸ºÎÌå½ÐԲ̨£»
¢ÜÓÐÁ½¸öÃæÆ½ÐУ¬ÆäÓà¸÷Ãæ¶¼ÊÇÆ½ÐÐËıßÐεļ¸ºÎÌå½ÐÀâÖù£®
| A£® | ¢Û¢Ü | B£® | ¢Ù¢Ü | C£® | ¢Ù¢Ú¢Ü | D£® | ¢Ù |
| A£® | $\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$ | B£® | $\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$ | C£® | $\frac{{x}^{2}}{12}+\frac{{y}^{2}}{8}=1$ | D£® | $\frac{{x}^{2}}{16}+\frac{{y}^{2}}{8}=1$ |
| A£® | {2£¬4} | B£® | {3} | C£® | {2£¬4£¬6} | D£® | {1£¬2£¬3£¬4£¬5} |