题目内容
设
=(1-cosα,sinα),
=(1+cosβ,sinβ),
=(1,0),α、β∈(0,π),
与
的夹角为θ1,
与
的夹角为θ2,且θ1-θ2=
.
(1)求cos(α+β)的值;(2)设
=
,
=
,
=
,且
+
+
=3
求证:△ABD是正三角形.
| a |
| b |
| c |
| a |
| c |
| b |
| c |
| π |
| 3 |
(1)求cos(α+β)的值;(2)设
| OA |
| a |
| OB |
| b |
| OD |
| d |
| a |
| b |
| d |
| c |
(1)∵α、β∈(0,π),
∴
、
∈(0,
),
故cosθ1=
=
=
=sin
=cos(
-
),
cosθ2=
=
=
=cos
,
∴θ1=
-
,θ2=
.
又θ1-θ2=
,即
-
-
=
,可得α+β=
,故cos(α+β)=
.
(2)∵
=
-
=
-
=(cosβ+cosα,sinβ-sinα),
∴|
|=
=
=
,
由
+
+
=3
,可得
=3
-
-
=(1+cosα-cosβ,-sinα-sinβ),
∵
=
-
=
-
=(2cosα-cosβ,-2sinα-sinβ),
∴|
|=
=
=
,
同理可得|
|=
,故|
|=|
|=|
|,故△ABD是正三角形.
∴
| α |
| 2 |
| β |
| 2 |
| π |
| 2 |
故cosθ1=
| a•c |
| |a||c| |
| 1-cosα | ||
|
|
| α |
| 2 |
| π |
| 2 |
| α |
| 2 |
cosθ2=
| b•c |
| |b||c| |
| 1+cosβ | ||
|
|
| β |
| 2 |
∴θ1=
| π |
| 2 |
| α |
| 2 |
| β |
| 2 |
又θ1-θ2=
| π |
| 3 |
| π |
| 2 |
| α |
| 2 |
| β |
| 2 |
| π |
| 3 |
| π |
| 3 |
| 1 |
| 2 |
(2)∵
| AB |
| OB |
| OA |
| b |
| a |
∴|
| AB |
| (cosβ+cosα)2+(sinβ-sinα)2 |
| 2+2cos(β+α) |
| 3 |
由
| a |
| b |
| d |
| c |
| d |
| c |
| a |
| b |
∵
| AD |
| OD |
| OA |
| d |
| a |
∴|
| AD |
| (2cosα-cosβ)2+(2sinα+sinβ)2 |
| 5-4cos(β-α) |
| 3 |
同理可得|
| BD |
| 3 |
| AB |
| AD |
| BD |
练习册系列答案
相关题目