题目内容
设
=(1+cosα,sinα),
=(1-cosβ,sinβ),
=(1,0),α∈(0,π),β∈(π,2π),
与
的夹角为θ1,
与
夹角为θ2,且θ1-θ2=
,求sin
的值.
| a |
| b |
| c |
| a |
| c |
| b |
| c |
| π |
| 6 |
| α-β |
| 4 |
∵α∈(0,π),
∈(0,
),
=(1,0)
∴
=(1+cosα,sinα)=2cos
(cos
,sin
),∴θ
∵β∈(π.2π),0<β-π<π-π<π-β<0,-
<
<0
=(1-cosβ,sinβ)=2sin
(sin
,cos
)∴θ2=
∴θ1-θ2=
∴
=-
,sin
=sin(-
)=-
| α |
| 2 |
| π |
| 2 |
| C |
∴
| a |
| α |
| 2 |
| α |
| 2 |
| α |
| 2 |
∵β∈(π.2π),0<β-π<π-π<π-β<0,-
| π |
| 2 |
| π-β |
| 2 |
| b |
| β |
| 2 |
| β |
| 2 |
| β |
| 2 |
| β-π |
| 2 |
∴θ1-θ2=
| π |
| 6 |
∴
| α-β |
| 2 |
| π |
| 3 |
| α-β |
| 4 |
| π |
| 6 |
| 1 |
| 2 |
练习册系列答案
相关题目