题目内容
心理学研究表明,学生在课堂上各时段的接受能力不同.上课开始时,学生的兴趣高昂,接受能力渐强,随后有一段不太长的时间,学生的接受能力保持较理想的状态;渐渐地学生的注意力开始分散,接受能力渐弱并趋于稳定.设上课开始x分钟时,学生的接受能力为f(x)(f(x)值越大,表示接受能力越强),f(x)与x的函数关系为:
f(x)=
(1)开讲后多少分钟,学生的接受能力最强?能维持多少时间?
(2)试比较开讲后5分钟、20分钟、35分钟,学生的接受能力的大小;
(3)若一个数学难题,需要56的接受能力(即f(x)≥56)以及12分钟时间,老师能否及时在学生一直达到所需接受能力的状态下讲述完这个难题?
f(x)=
|
(1)开讲后多少分钟,学生的接受能力最强?能维持多少时间?
(2)试比较开讲后5分钟、20分钟、35分钟,学生的接受能力的大小;
(3)若一个数学难题,需要56的接受能力(即f(x)≥56)以及12分钟时间,老师能否及时在学生一直达到所需接受能力的状态下讲述完这个难题?
考点:函数模型的选择与应用
专题:应用题,函数的性质及应用
分析:(1)求学生的接受能力最强其实就是要求分段函数的最大值,方法是分别求出各段的最大值取其最大即可;
(2)比较5分钟、20分钟、35分钟学生的接受能力大小,方法是把x=5代入第一段函数中,而x=20要代入到第三段函数中,x=35代入第四段函数,比较大小即可
(3)在每一段上解不等式f(x)≥56,求出满足条件的x,从而得到接受能力56及以上的时间,然后与12进行比较即可.
(2)比较5分钟、20分钟、35分钟学生的接受能力大小,方法是把x=5代入第一段函数中,而x=20要代入到第三段函数中,x=35代入第四段函数,比较大小即可
(3)在每一段上解不等式f(x)≥56,求出满足条件的x,从而得到接受能力56及以上的时间,然后与12进行比较即可.
解答:
解:(1)由题意可知:0<x≤10
f(x)=-0.1(x-13)2+60.9
所以当x=10时,f(x)的最大值是60,…(2分)
又10<x≤15,f(x)=60 …(3分)
所以开讲后10分钟,学生的接受能力最强,并能维持5分钟.…(4分)
(2)由题意可知:f(5)=54.5,f(20)=45,f(35)=30 …(5分)
所以开讲后5分钟、20分钟、35分钟的学生的接受能力从大小依次是
开讲后5分钟、20分钟、35分钟的接受能力;…(6分)
(3)由题意可知:
当0<x≤10,f(x)=-0.1(x-13)2+60.9≥56
解得:6≤x≤10 …(7分)
当10<x≤15时,f(x)=60>56,满足要求; …(8分)
当15<x≤25时,-3x+105≥56
解得:15<x≤16
…(9分)
因此接受能力56及以上的时间是10
分钟小于12分钟.
所以老师不能在所需的接受能力和时间状态下讲述完这个难题.…(10分)
f(x)=-0.1(x-13)2+60.9
所以当x=10时,f(x)的最大值是60,…(2分)
又10<x≤15,f(x)=60 …(3分)
所以开讲后10分钟,学生的接受能力最强,并能维持5分钟.…(4分)
(2)由题意可知:f(5)=54.5,f(20)=45,f(35)=30 …(5分)
所以开讲后5分钟、20分钟、35分钟的学生的接受能力从大小依次是
开讲后5分钟、20分钟、35分钟的接受能力;…(6分)
(3)由题意可知:
当0<x≤10,f(x)=-0.1(x-13)2+60.9≥56
解得:6≤x≤10 …(7分)
当10<x≤15时,f(x)=60>56,满足要求; …(8分)
当15<x≤25时,-3x+105≥56
解得:15<x≤16
| 1 |
| 3 |
因此接受能力56及以上的时间是10
| 1 |
| 3 |
所以老师不能在所需的接受能力和时间状态下讲述完这个难题.…(10分)
点评:本题主要考查了函数模型的选择与应用,此题学生容易出错,原因是学生把分段函数定义理解不清,自变量取值不同,函数解析式不同是分段函数最显著的特点.
练习册系列答案
相关题目