题目内容
5.二次函数y=3x2+2(m-1)x+n在区间(-∞,1)上是减函数,在区间[1,+∞)上是增函数,则实数m=-2.分析 求出二次函数的对称轴,即可推出结果.
解答 解:二次函数y=3x2+2(m-1)x+n的开口向上,对称轴为:x=$-\frac{m-1}{3}$,
二次函数y=3x2+2(m-1)x+n在区间(-∞,1)上是减函数,在区间[1,+∞)上是增函数,
可得:$-\frac{m-1}{3}=1$,解得m=-2.
故答案为:-2
点评 本题考查二次函数的对称性,二次函数的性质的应用,考查计算能力.
练习册系列答案
相关题目
10.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$(x,y∈R),且$\overrightarrow{a}$•$\overrightarrow{c}$>0,$\overrightarrow{b}$•$\overrightarrow{c}$>0.( )
| A. | 若$\overrightarrow{a}$•$\overrightarrow{b}$<0,则x>0,y>0 | B. | 若$\overrightarrow{a}$•$\overrightarrow{b}$<0,则x<0,y<0 | ||
| C. | 若$\overrightarrow{a}$•$\overrightarrow{b}$>0,则x<0,y<0 | D. | 若$\overrightarrow{a}$•$\overrightarrow{b}$>0,则x>0,y>0 |