题目内容

15.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|(0<x≤2)}\\{-\frac{1}{2}x+2(x>2)}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是(  )
A.(1,4)B.(2,4)C.(0,8)D.(2,8)

分析 画出函数f(x)的图象,根据a,b,c互不相等,且f(a)=f(b)=f(c),然后我们可以令a<b<c,不难根据对数的运算性质,及c的取值范围得到abc的取值范围

解答 解:f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|(0<x≤2)}\\{-\frac{1}{2}x+2(x>2)}\end{array}\right.$,函数的图象如下图所示:
若a,b,c互不相等,且f(a)=f(b)=f(c),
令a<b<c,则a•b=1,2<c<4
故2<abc<4
故选:B

点评 本题考查的知识点是对数函数图象与性质的综合应用,属于中档题.其中画出函数图象,利用图象的直观性,数形结合进行解答是解决此类问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网