题目内容

已知公差不为0的等差数列{an}的前n项和为Sn,S4=16,a22=a1a5
(1)求数列{an}的通项公式;
(2)设bn=
1
anan+1
,求数列{bn}的前n项和Tn
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)设等差数列{an}的公差为d≠0,由S4=16,a22=a1a5.可得
4a1+
4×3
2
d=16
(a1+d)2=a1(a1+4d)
,解得即可;
(2)由(1)可得:bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
.利用“裂项求和”即可得出.
解答: 解:(1)设等差数列{an}的公差为d≠0,∵S4=16,a22=a1a5
4a1+
4×3
2
d=16
(a1+d)2=a1(a1+4d)
,解得
a1=1
d=2

∴an=a1+(n-1)d=2n-1.
(2)由(1)可得:bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

∴数列{bn}的前n项和Tn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]
=
1
2
(1-
1
2n+1
)
=
n
2n+1
点评:本题考查了等差数列的通项公式和“裂项求和”方法,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网