题目内容
12.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$\overrightarrow{a}$=(2,0),|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$+2$\overrightarrow{b}$|等于( )| A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 12 | D. | $\sqrt{10}$ |
分析 运用向量的数量积的定义,可得,$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cos60°=1,再由向量的模的平方即为向量的平方,计算即可得到所求值.
解答 解:由向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$\overrightarrow{a}$=(2,0),|$\overrightarrow{b}$|=1,
可得|$\overrightarrow{a}$|=2,$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cos60°=2•1•$\frac{1}{2}$=1,
则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{{\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow{b}+4{\overrightarrow{b}}^{2}}$=$\sqrt{4+4+4}$=2$\sqrt{3}$.
故选:B.
点评 本题考查向量的数量积的定义和性质,主要是向量的模的平方即为向量的平方,考查运算求解的能力,属于基础题.
练习册系列答案
相关题目
3.
如图,A地到机场共有两条路径L1和L2,L1虽然路程较短,但经过部分城区,容易堵车;L2道路较为畅通,但绕行距离长.为了给A地的人去机场提供帮助,现随机抽取1000位从A地到达机场的人进行调查,调查结果如表:
(Ⅰ)试估计40分钟内不能从A地赶到机场的概率;
(Ⅱ)现甲、乙两人分别有40分钟和50分钟时间用于赶往机场,为了尽最大可能在允许的时间内赶到机场,试通过计算说明,他们应如何选择各自的路径.
| 所用时间(分钟) | 10~20 | 20~30 | 30~40 | 40~50 | 50~60 |
| 选择L1的人数 | 60 | 120 | 180 | 120 | 120 |
| 选择L2的人数 | 0 | 40 | 160 | 160 | 40 |
(Ⅱ)现甲、乙两人分别有40分钟和50分钟时间用于赶往机场,为了尽最大可能在允许的时间内赶到机场,试通过计算说明,他们应如何选择各自的路径.
7.已知实数p>0,直线4x+3y-2p=0与抛物线y2=2px和圆(x-$\frac{p}{2}$)2+y2=$\frac{{p}^{2}}{4}$从上到下的交点依次为A,B,C,D,则$\frac{|AC|}{|BD|}$的值为( )
| A. | $\frac{1}{8}$ | B. | $\frac{5}{16}$ | C. | $\frac{3}{8}$ | D. | $\frac{7}{16}$ |
17.不等式|2x-log2x|<2x+|log2x|成立,则( )
| A. | 1<x<2 | B. | 0<x<1 | C. | x>1 | D. | x>2 |
1.已知椭圆C1、抛物线C2的焦点均在x轴上,且椭圆C1的中心和抛物线C2的顶点均为原点O,从椭圆C1上取两个点.抛物线C2上取一个点.将其坐标记录于表中:
(Ⅰ)求椭圆C1和抛物线C2的标准方程:
(Ⅱ)直线l:y=kx+m(k≠0)与椭圆C1交于不同的两点M、N.
(i)若线段MN的垂直平分线过点G($\frac{1}{8}$,0),求实数k的取值范围.
(ii)在满足(i)的条件下,且有m≠=1,求△OMN的面积S△OMN.
| x | 3 | -2 | $\sqrt{2}$ |
| y | -2$\sqrt{3}$ | 0 | $\frac{\sqrt{6}}{2}$ |
(Ⅱ)直线l:y=kx+m(k≠0)与椭圆C1交于不同的两点M、N.
(i)若线段MN的垂直平分线过点G($\frac{1}{8}$,0),求实数k的取值范围.
(ii)在满足(i)的条件下,且有m≠=1,求△OMN的面积S△OMN.