题目内容

已知f(x)=
a
b
-1
,其中向量
a
=(
3
sin2x,cosx
),
b
=(1,2cosx)(x∈R)
(1)求f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边分别为a、b、c,f(A)=2,a=
3
,b=3,求边长c的值.
分析:(1)利用f(x)=
a
b
-1展开,利用二倍角公式以及两角和的正弦函数化简为:2sin(2x+
π
6

利用正弦函数的单调增区间求出f(x)的递增区间即可.
(2)通过f(A)=2sin(2A+
π
6
)=2求出A=
π
6
,由余弦定理得a2=b2+c2-2bccosA
求出c=2
3
或c=
3
即可.
解答:解:(1)f(x)=
a
b
-1=(
3
sin2x,cosx)•(1,2cosx)-1
=
3
sin2x+2cos2x-1=
3
sin2x+cos2x=2sin(2x+
π
6

由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
得kπ-
π
3
≤x≤kπ+
π
6

∴f(x)的递增区间为[kπ-
π
3
,kπ+
π
6
]
(k∈z)

(2)f(A)=2sin(2A+
π
6
)=2,∴sin(2A+
π
6
)=1,
∴2A+
π
6
=
π
2
,∴A=
π
6
由余弦定理得a2=b2+c2-2bccosA
3=9+c2-3
3
c即c2-3
3
c+6=0(c-2
3
)(c-
3
)=0∴c=2
3
或c=
3
点评:本题是基础题,考查二倍角公式两角和的正弦函数,化简三角函数表达式,余弦定理的应用,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网