题目内容


已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)如果对于任意的,都有,求的取值范围.


解:(Ⅰ) 因为,                                  

因为

所以.                                                

所以

        

.

        令,解得.                              

        随着的变化,的变化情况如下:

0

0

        即上单调递减,在上单调递增.     

(Ⅱ) 因为对于任意的,都有

所以.                                   

.

因为,                                 

又因为

所以.                                      

所以.                                            

所以上单调递增.                              

所以.                              

.                                                

                             


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网