题目内容
一枚骰子(形状为正方体,六个面上分别标有数字1,2,3, 4,5,6的玩具)先后抛掷两次,骰子向上的点数依次为.则的概率为 .
已知.
(1) 求的值;
(2) 若,求的值;
已知顶点在原点,焦点在轴上的抛物线过点.
(1)求抛物线的标准方程;
(2)若抛物线与直线交于、两点,求证:.
过椭圆的左顶点A且斜率为的直线交椭圆于另一点,且点在轴上的射影恰为右焦点,若,则椭圆的离心率的值是 .
设函数,.
(1)当时,函数取得极值,求的值;
(2)当时,求函数在区间[1,2]上的最大值;
(3)当时,关于的方程有唯一实数解,求实数的值.
若“”是 “”的必要不充分条件,则的最大值为 .
如图,过点的两直线与抛物线相切于A、B两点, AD、BC垂直于直线,垂足分别为D、C.
(1)若,求矩形ABCD面积;
(2)若,求矩形ABCD面积的最大值.
设函数,若实数满足,请将按从小到大的顺序排列 (用“”连接).
如图,在等腰直角△ABC中,过直角顶点C在△ACB内任作一条射线CM,与线段AB交于点M,则AM<AC的概率为 。