题目内容
7.若函数f(x)=$\left\{\begin{array}{l}{log_a}x,0<x≤1\\(4-a){x^2}-ax+1,x>1\end{array}$在(0,+∞)上单调递增,则实数a的取值范围是( )| A. | (1,4) | B. | $[\frac{5}{2},4)$ | C. | $(1,\frac{5}{2}]$ | D. | $[\frac{5}{2},\frac{8}{3}]$ |
分析 根据f(x)在(0,+∞)上为增函数,从而f(x)在(0,1]和(1,+∞)上都是增函数,结合增函数的定义即可得到$\left\{\begin{array}{l}{a>1}\\{4-a>0}\\{\frac{a}{2(4-a)}≤1}\\{lo{g}_{a}1≤(4-a)•{1}^{2}-a+1}\end{array}\right.$,解该不等式便可得出实数a的取值范围.
解答 解:根据条件:
$\left\{\begin{array}{l}{a>1}\\{4-a>0}\\{\frac{a}{2(4-a)}≤1}\\{lo{g}_{a}1≤(4-a)•{1}^{2}-a+1}\end{array}\right.$;
解得,$1<a≤\frac{5}{2}$;
∴a的取值范围是$(1,\frac{5}{2}]$.
故选C.
点评 考查分段函数单调性的判断,对数函数和二次函数的单调性,以及增函数的定义.
练习册系列答案
相关题目
18.已知函数y=f(x)与y=F(x)的图象关于y轴对称,当函数y=f(x)和y=F(x)在区间[a,b]同时递增或同时递减时,把区间[a,b]叫做函数y=f(x)的“不动区间”.若区间[1,2]为函数f(x)=|2x-t|的“不动区间”,则实数t的取值范围是( )
| A. | (0,2] | B. | [$\frac{1}{2}$,+∞) | C. | [$\frac{1}{2}$,2] | D. | [$\frac{1}{2}$,2]∪[4,+∞) |
2.已知$f(x)={3^x}-{log_{\frac{1}{3}}}$x,实数a、b、c满足f(a)•f(b)•f(c)<0,且0<a<b<c,若实数x0是函数f(x)的一个零点,那么下列不等式中,不可能成立的是( )
| A. | x0<a | B. | x0>b | C. | x0<c | D. | x0>c |
17.命题“?x0∈(0,+∞),lnx0>3-x0”的否定是( )
| A. | “?x0∈(0,+∞),lnx0≤3-x0 | B. | ?x∈(0,+∞),lnx>3-x | ||
| C. | ?x∈(0,+∞),lnx<3-x | D. | ?x∈(0,+∞),lnx≤3-x |