题目内容
| 3 |
| OP |
| OQ |
分析:设AB的中点为E,则由题意可得OE=
AB=1,
=
(
+
),利用两个向量的加减法的法则,以及其几何意义化简
•
为
•
,故当
=2
时,
•
最大为 2
2,从而得到结果.
| 1 |
| 2 |
| OE |
| 1 |
| 2 |
| OA |
| OB |
| OP |
| OQ |
| OE |
| OC |
| OC |
| OE |
| OP |
| OQ |
| OE |
解答:解:设AB的中点为E,则由题意可得OE=
AB=1,
=
(
+
),
∵
=
+
=
+
,
=
+
=
+
,
∴
•
=(
+
)•(
+
)=
•
+
•
+
•
+
•
.
由于OA⊥OB,AC⊥BC,∴
•
=0,
•
=0,
∴
•
=
•
+
•
=
•(
-
)+
•(
-
)=
•
-
•
+
•
-
•
=
•
+
•
=
(
+
)•
=
•
,
故当
与
共线时,即
=2
时,
•
最大为 2
2=2×1=2,
故选B.
| 1 |
| 2 |
| OE |
| 1 |
| 2 |
| OA |
| OB |
∵
| OP |
| OB |
| BP |
| OB |
| ||
| 2 |
| OQ |
| OA |
| AQ |
| OA |
| ||
| 2 |
∴
| OP |
| OQ |
| OB |
| ||
| 2 |
| OA |
| ||
| 2 |
| OA |
| OB |
| OB |
| ||
| 2 |
| OA |
| ||
| 2 |
| 1 |
| 4 |
| BC |
| AC |
由于OA⊥OB,AC⊥BC,∴
| OA |
| OB |
| 1 |
| 4 |
| BC |
| AC |
∴
| OP |
| OQ |
| OB |
| ||
| 2 |
| OA |
| ||
| 2 |
| 1 |
| 2 |
| OB |
| OC |
| OA |
| 1 |
| 2 |
| OA |
| OC |
| OB |
| 1 |
| 2 |
| OB |
| OC |
| 1 |
| 2 |
| OA |
| OB |
| 1 |
| 2 |
| OA |
| OC |
| 1 |
| 2 |
| OA |
| OB |
=
| 1 |
| 2 |
| OB |
| OC |
| 1 |
| 2 |
| OA |
| OC |
| 1 |
| 2 |
| OA |
| OB |
| OC |
| OE |
| OC |
故当
| OE |
| OC |
| OC |
| OE |
| OP |
| OQ |
| OE |
故选B.
点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的运算,属于中档题.
练习册系列答案
相关题目