题目内容
若函数f(x)=loga(x+
)是奇函数,则a=______.
| x2+2a2 |
∵函数f(x)=loga(x+
)是奇函数,
∴f(x)+f(-x)=0
即loga(x+
)+loga(-x+
)=0
∴loga(x+
)×(-x+
)=0
∴x2+2a2-x2=1,即2a2=1,
∴a=±
又a对数式的底数,a>0
∴a=
故应填
| x2+2a2 |
∴f(x)+f(-x)=0
即loga(x+
| x2+2a2 |
| x2+2a2 |
∴loga(x+
| x2+2a2 |
| x2+2a2 |
∴x2+2a2-x2=1,即2a2=1,
∴a=±
| ||
| 2 |
又a对数式的底数,a>0
∴a=
| ||
| 2 |
故应填
| ||
| 2 |
练习册系列答案
相关题目