题目内容
确定函数f(x)=x2-2x+4在哪个区间内是增函数,哪个区间内是减函数.![]()
解:f′(x)=(x2-2x+4)′=2x-2.?
令2x-2>0,解得x>1.?
∴当x∈(1,+∞)时,f′(x)>0,f(x)是增函数.?
令2x-2<0,解得x<1.?
∴当x∈(-∞,1)时,f′(x)<0,f(x)是减函数.
温馨提示
求函数单调区间的步骤:?
(1)求函数f(x)的导数f′(x);?
(2)令f′(x)>0解不等式,得x的范围就是递增区间;?
(3)令f′(x)<0解不等式,得x的范围就是递减区间.
拓展迁移
确定下列函数的单调区间
练习册系列答案
相关题目
探究函数f(x)=x+
,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数f(x)=x+
(x>0)在区间(0,2)上递减,函数f(x)=x+
(x>0)在区间 上递增;
(2)函数f(x)=x+
(x>0),当x= 时,y最小= ;
(3)函数f(x)=x+
(x<0)时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
| 4 |
| x |
| x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.002 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
(1)函数f(x)=x+
| 4 |
| x |
| 4 |
| x |
(2)函数f(x)=x+
| 4 |
| x |
(3)函数f(x)=x+
| 4 |
| x |
探究函数f(x)=x+
x∈(0,+∞)的最小值,并确定相应的x的值,列表如下,请观察表中y值随x值变化的特点,完成下列问题:
(1)若当x>0时,函数f(x)=x+
时,在区间(0,2)上递减,则在 上递增;
(2)当x= 时,f(x)=x+
,x>0的最小值为 ;
(3)试用定义证明f(x)=x+
,x>0在区间上(0,2)递减;
(4)函数f(x)=x+
,x<0有最值吗?是最大值还是最小值?此时x为何值?
解题说明:(1)(2)两题的结果直接填写在答题卷中横线上;(4)题直接回答,不需证明.
| 4 |
| x |
| x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
| 4 |
| x |
(2)当x=
| 4 |
| x |
(3)试用定义证明f(x)=x+
| 4 |
| x |
(4)函数f(x)=x+
| 4 |
| x |
解题说明:(1)(2)两题的结果直接填写在答题卷中横线上;(4)题直接回答,不需证明.