题目内容

某校为了解高二学生A,B两个学科学习成绩的合格情况是否有关,随机抽取了该年级一次期末考试A,B两个学科的合格人数与不合格人数,得到以下2X2列联表:
A学科合格人数A学科不合格人数合计
B学科合格人数402060
B学科不合格人数203050
合计6050110
(1)据此表格资料,你认为有多大把握认为“A学科合格”与“B学科合格”有关;
(2)从“A学科合格”的学生中任意抽取2人,记被抽取的2名学生中“B学科合格”的人数为X,求X的数学期望.
附公式与表:K2=
P(K2≥k)0.150.100.050.0250.0100.005
K2.0722.7063.8415.0246.6357.879

【答案】分析:(1)利用公式先计算出K2,即可得出答案;
(2)由题意可知:X可以取0,1,2.因为A学科合格的人数为60,从中任选2人可有种方法,其中X=0表示所抽取的2人A学科合格而B学科不合格,故有种选法;X=1表示所抽取的2人A学科合格而B学科有1人合格1人不合格,故有种选法;X=2表示所抽取的2人A学科合格而B学科也合格,故有种选法.再利用古典概型的概率计算公式即可得出.进而得到分布列和数学期望.
解答:解:(1)K2=≈7.822>6.635
所以,有90%的把握认为“A学科合格”与“B学科合格”有关.
(2)由题意可知:X可以取0,1,2,
P(X=0)==,P(X=1)==,P(X=2)==
∴EX=+2×=
点评:熟练掌握古典概型的概率计算公式、随机变量的分布列和数学期望、独立性检验的方法是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网