题目内容
5.若抛物线y2=2px(p>0)上的点$A({x}_{0},\sqrt{2})$到其焦点的距离是A到y轴距离的3倍,则P=2.分析 根据抛物线的定义及题意可知3x0=x0+$\frac{p}{2}$,得出x0求得p,可得答案.
解答 解:由题意,3x0=x0+$\frac{p}{2}$,∴x0=$\frac{p}{4}$,
∴$\frac{{p}^{2}}{2}$=2,
∵p>0,
∴p=2,
故答案为2.
点评 本题主要考查了抛物线的定义和性质.考查了考生对抛物线定义的掌握和灵活应用,属于基础题.
练习册系列答案
相关题目
15.如果直线 x+2ay-1=0与直线(3a-1)x-ay-1=0平行,则系数a的值为( )
| A. | 0或6 | B. | 0或$\frac{1}{6}$ | C. | 6或 $\frac{1}{6}$ | D. | $\frac{1}{6}$ |
20.已知曲线f(x)=x2+a在点(1,f(1))处切线的斜率等于f(2),则实数a值为( )
| A. | -2 | B. | -1 | C. | $\frac{3}{2}$ | D. | 2 |
17.已知向量$\overrightarrow{a}$=(2,m),$\overrightarrow{b}$=(1,-2)若$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow{b}$)=$\overrightarrow{b}$2+m2,则实数m等于( )
| A. | $\frac{1}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{\sqrt{5}}{4}$ | D. | $\frac{5}{4}$ |