题目内容

11.设α是第二象限角,P(x,4)为其终边上一点,且$cosα=\frac{1}{5}x$,则x=-3,tanα=-$\frac{4}{3}$.

分析 由条件利用任意角的三角函数的定义,求得x的值,可得tanα的值.

解答 解:∵α是第二象限角,P(x,4)为其终边上的一点,∴x<0,
∵cosα=$\frac{x}{5}$=$\frac{x}{\sqrt{{x}^{2}+16}}$,
∴x=-3,
∴tanα=-$\frac{4}{3}$,
故答案为:-3,-$\frac{4}{3}$

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网