题目内容
已知cos(x+
)=
,
π<x<
π,则sinx=______.
| π |
| 4 |
| 3 |
| 5 |
| 5 |
| 4 |
| 7 |
| 4 |
由
π<x<
π,得到
π<x+
< 2π,
∵cos(x+
)=
,∴sin(x+
)=-
,
则sinx=sin[(x+
)-
]
=sin(x+
)cos
-cos(x+
)sin
=-
×
-
×
=-
.
故答案为:-
| 5 |
| 4 |
| 7 |
| 4 |
| 3 |
| 2 |
| π |
| 4 |
∵cos(x+
| π |
| 4 |
| 3 |
| 5 |
| π |
| 4 |
| 4 |
| 5 |
则sinx=sin[(x+
| π |
| 4 |
| π |
| 4 |
=sin(x+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=-
| 4 |
| 5 |
| ||
| 2 |
| 3 |
| 5 |
| ||
| 2 |
=-
7
| ||
| 10 |
故答案为:-
7
| ||
| 10 |
练习册系列答案
相关题目
已知cos(x+
)=
,
<x<
,则
=( )
| π |
| 4 |
| 3 |
| 5 |
| 17π |
| 12 |
| 7π |
| 4 |
| sin2x+2sin2x |
| 1-tanx |
A、-
| ||
B、
| ||
C、-
| ||
D、
|