题目内容
设f(k)是满足不等式log2x+log2(5•2k-1-x)≥2k(k∈N*)的自然数x的个数.(1)求f(k)的函数解析式;
(2)Sn=f(1)+f(2)+…+f(n),求Sn;
(3)设Pn=2n+1+n-3,由(2)中Sn及Pn构成函数Tn,Tn=
| log2(Sn-Pn) | log2(Sn+1-Pn+1)-10.5 |
分析:(1)、由log2x+log2(5•2k-1-x)≥2k可知
,解这个不等式组得到x的取值范围后,就能求出f(k)的解析式;
(2)、由Sn=f(1)+f(2)+…+f(n)=3(1+2+22+…+2n-1)+n,利用等比数列求和公式,即可求得结果;
(3)将Sn及Pn代入函数Tn中,利用对数的运算性质对Tn化简得到
,利用分子常数化,和反比例函数的单调性,即可求得Tn的最小值与最大值.
|
(2)、由Sn=f(1)+f(2)+…+f(n)=3(1+2+22+…+2n-1)+n,利用等比数列求和公式,即可求得结果;
(3)将Sn及Pn代入函数Tn中,利用对数的运算性质对Tn化简得到
| n |
| n-9.5 |
解答:解:(1)∵log2x+log2(5•2k-1-x)≥2k,∴log2(5•2k-1x-x2)≥2k=log222k,
∴
,
解得得2k-1≤x≤4•2k-1.
∴f(k)=4•2k-1-2k-1+1=3•2k-1+1(k∈N*)
(2)sn=f(1)+f(2)+…+f(n)=3(20+21+22+…+2n-1)+n
=
+n=3•2n+n-3;
(3)Tn=
=
=
=1+
,
则n=9时有最小值T9=-18;n=10时有最大值T10=20.
∴
|
解得得2k-1≤x≤4•2k-1.
∴f(k)=4•2k-1-2k-1+1=3•2k-1+1(k∈N*)
(2)sn=f(1)+f(2)+…+f(n)=3(20+21+22+…+2n-1)+n
=
| 3(1-2n) |
| 1-2 |
(3)Tn=
| log2(3•2n+n-3-2n+1-n+3) |
| log2(3•2n+1+n+1-3-2n+2-n-1+3)-10.5 |
=
| n |
| n+1-10.5 |
| n |
| n-9.5 |
=1+
| 9.5 |
| n-9.5 |
则n=9时有最小值T9=-18;n=10时有最大值T10=20.
点评:本题考查对数的运算性质以及利用对数的单调性求解对数不等式,注意对数函数的定义域,和等比数列的求和公式,利用对数函数的单调性解对数不等式,求出函数的解析式是解题的关键,同时考查灵活应用知识分析解决问题的能力和运算能力,属中档题.
练习册系列答案
相关题目