题目内容
如图,已知椭圆
的离心率为
,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(
+1).一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1·k2=1;
(Ⅲ)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.
答案:
练习册系列答案
相关题目