题目内容

7.已知f(x)=$\frac{xlnx+ax}{e^x}$(e是自然对数的底数,a是大于1的常数),设m>1,则下列正确的是(  )
A.$\frac{4mf(m+1)}{m+1}$>2$\sqrt{m}$f(2$\sqrt{m}$)>(m+1)f($\frac{4m}{m+1}$)B.$\frac{4mf(m+1)}{m+1}$<2$\sqrt{m}$f(2$\sqrt{m}$)<(m+1)f($\frac{4m}{m+1}$)
C.2$\sqrt{m}$f(2$\sqrt{m}$)>$\frac{4mf(m+1)}{m+1}$>(m+1)f($\frac{4m}{m+1}$)D.2$\sqrt{m}$f(2$\sqrt{m}$)<$\frac{4mf(m+1)}{m+1}$<(m+1)f($\frac{4m}{m+1}$)

分析 构造函数g(x)=$\frac{f(x)}{x}$,利用函数的单调性,判断即可.

解答 解:设函数$g(x)=\frac{f(x)}{x}$,$g'(x)=\frac{1-ax-xlnx}{{x{e^2}}}$
则g(x)在(1,+∞)上单调递减.
由于m>1,由基本不等式可得$m+1>2\sqrt{m}>\frac{4m}{m+1}>1$,
那么$g(m+1)<g(2\sqrt{m})<g(\frac{4m}{m+1})$,
即$\frac{f(m+1)}{m+1}<\frac{{f(2\sqrt{m})}}{{2\sqrt{m}}}<\frac{m+1}{4m}f(\frac{4m}{m+1})$,
不等式各项同乘以4m,
即$\frac{4mf(m+1)}{m+1}$<2$\sqrt{m}$f(2$\sqrt{m}$)<(m+1)f($\frac{4m}{m+1}$)
故选B.

点评 本题主要考查函数的单调性,属于中等题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网