题目内容
7.已知f(x)=$\frac{xlnx+ax}{e^x}$(e是自然对数的底数,a是大于1的常数),设m>1,则下列正确的是( )| A. | $\frac{4mf(m+1)}{m+1}$>2$\sqrt{m}$f(2$\sqrt{m}$)>(m+1)f($\frac{4m}{m+1}$) | B. | $\frac{4mf(m+1)}{m+1}$<2$\sqrt{m}$f(2$\sqrt{m}$)<(m+1)f($\frac{4m}{m+1}$) | ||
| C. | 2$\sqrt{m}$f(2$\sqrt{m}$)>$\frac{4mf(m+1)}{m+1}$>(m+1)f($\frac{4m}{m+1}$) | D. | 2$\sqrt{m}$f(2$\sqrt{m}$)<$\frac{4mf(m+1)}{m+1}$<(m+1)f($\frac{4m}{m+1}$) |
分析 构造函数g(x)=$\frac{f(x)}{x}$,利用函数的单调性,判断即可.
解答 解:设函数$g(x)=\frac{f(x)}{x}$,$g'(x)=\frac{1-ax-xlnx}{{x{e^2}}}$
则g(x)在(1,+∞)上单调递减.
由于m>1,由基本不等式可得$m+1>2\sqrt{m}>\frac{4m}{m+1}>1$,
那么$g(m+1)<g(2\sqrt{m})<g(\frac{4m}{m+1})$,
即$\frac{f(m+1)}{m+1}<\frac{{f(2\sqrt{m})}}{{2\sqrt{m}}}<\frac{m+1}{4m}f(\frac{4m}{m+1})$,
不等式各项同乘以4m,
即$\frac{4mf(m+1)}{m+1}$<2$\sqrt{m}$f(2$\sqrt{m}$)<(m+1)f($\frac{4m}{m+1}$)
故选B.
点评 本题主要考查函数的单调性,属于中等题.
练习册系列答案
相关题目
12.若过点P(a,a)与曲线f(x)=xlnx相切的直线有两条,则实数a的取值范围是( )
| A. | (-∞,e) | B. | (e,+∞) | C. | (0,$\frac{1}{e}$) | D. | (1,+∞) |