题目内容
在数列{an}中,a1=1,an+1=(1+
)an+
.
(1)求数列{an}的前n项和Sn;
(2)在数列{an}中,是否存在连续三项成等差数列?若存在,写出满足条件的所有项;若不存在,说明理由.
| 1 |
| n |
| n+1 |
| 2n |
(1)求数列{an}的前n项和Sn;
(2)在数列{an}中,是否存在连续三项成等差数列?若存在,写出满足条件的所有项;若不存在,说明理由.
分析:(1)由a1=1,an+1=(1+
)an+
,知an+1=(1+
)an+
,an+1=
an+
×
,所以
-
=
,由累加法求出an=2n-
.由此能求出Sn.
(2)假设在数列{an}中,存在连续三项ak-1,ak,ak+1(k∈N*,k≥2)成等差数列,则ak-1+ak+1=2ak,即[2(k-1)-
]+[2(k+1)-
]=2(2k-
),由此能够推导出在数列{an}中,有且仅有连续三项a2,a3,a4成等差数列.
| 1 |
| n |
| n+1 |
| 2n |
| 1 |
| n |
| n+1 |
| 2n |
| n+1 |
| n |
| n+1 |
| n |
| 1 |
| 2 |
| an+1 |
| n+1 |
| an |
| n |
| 1 |
| 2n |
| 2n |
| 2n |
(2)假设在数列{an}中,存在连续三项ak-1,ak,ak+1(k∈N*,k≥2)成等差数列,则ak-1+ak+1=2ak,即[2(k-1)-
| 2(k-1) |
| 2k-1 |
| 2(k+1) |
| 2k+1 |
| 2k |
| 2k |
解答:解:(1)∵a1=1,an+1=(1+
)an+
,
∴an+1=(1+
)an+
,
an+1=
an+
×
,
n×an+1=(n+1)an+(n+1)×
∴
-
=
,
-
=
,
…
-
=
.
等式两边相加,得:
-
=
+
+
+…+
=
=1-
,
∴an=2n-
.
∵Sn=2(1+2+3+…+n)-(
+
+…+
)
=n(n+1)-(
+
+…+
).
设S=
+
+…+
,①
则
S=
+
+…+
,②
①-②,得
S=1+
+
+…+
-
=1+
-
=2-
-
,
∴S=4-
-
.
∴Sn=n(n+1)-4+
.
(2)假设在数列{an}中,存在连续三项ak-1,ak,ak+1(k∈N*,k≥2)成等差数列,
则ak-1+ak+1=2ak,即[2(k-1)-
]+[2(k+1)-
]=2(2k-
),
即
=0,∴k=3.
∴在数列{an}中,有且仅有连续三项a2,a3,a4成等差数列.
| 1 |
| n |
| n+1 |
| 2n |
∴an+1=(1+
| 1 |
| n |
| n+1 |
| 2n |
an+1=
| n+1 |
| n |
| n+1 |
| n |
| 1 |
| 2 |
n×an+1=(n+1)an+(n+1)×
| 1 |
| 2 |
∴
| an+1 |
| n+1 |
| an |
| n |
| 1 |
| 2n |
| an |
| n |
| an-1 |
| n-1 |
| 1 |
| 2n-1 |
…
| a2 |
| 2 |
| a1 |
| 1 |
| 1 |
| 2 |
等式两边相加,得:
| an |
| n |
| a1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 2n-1 |
| ||||
1-
|
| 1 |
| 2n-1 |
∴an=2n-
| 2n |
| 2n |
∵Sn=2(1+2+3+…+n)-(
| 2×1 |
| 21 |
| 2×2 |
| 22 |
| 2n |
| 2n |
=n(n+1)-(
| 2×1 |
| 21 |
| 2×2 |
| 22 |
| 2n |
| 2n |
设S=
| 2×1 |
| 21 |
| 2×2 |
| 22 |
| 2n |
| 2n |
则
| 1 |
| 2 |
| 2×1 |
| 22 |
| 2×2 |
| 23 |
| 2n |
| 2n+1 |
①-②,得
| 1 |
| 2 |
| 2 |
| 22 |
| 2 |
| 23 |
| 2 |
| 2n |
| 2n |
| 2n+1 |
=1+
| ||||
1-
|
| 2n |
| 2n+1 |
=2-
| 1 |
| 2n-1 |
| 2n |
| 2n+1 |
∴S=4-
| 4 |
| 2n |
| 2n |
| 2n |
∴Sn=n(n+1)-4+
| 4+2n |
| 2n |
(2)假设在数列{an}中,存在连续三项ak-1,ak,ak+1(k∈N*,k≥2)成等差数列,
则ak-1+ak+1=2ak,即[2(k-1)-
| 2(k-1) |
| 2k-1 |
| 2(k+1) |
| 2k+1 |
| 2k |
| 2k |
即
| 3-k |
| 2k |
∴在数列{an}中,有且仅有连续三项a2,a3,a4成等差数列.
点评:本题考查数列的前n项和的求法,考查等差数列的证明.综合性强,难度大,解题时要认真审题,仔细解答,注意合理地进行等价转化
练习册系列答案
相关题目