题目内容
在数列{an}中,a1=0,且对任意k∈N*.a2k-1,a2k,a2k+1成等差数列,其公差为dk.(Ⅰ)若dk=2k,证明a2k,a2k+1,a2k+2成等比数列(k∈N*)
(Ⅱ)若对任意k∈N*,a2k,a2k+1,a2k+2成等比数列,其公比为qk.
分析:(Ⅰ)证明:由题设,可得a2k+1=2k(k+1),从而a2k=a2k+1-2k=2k2,a2k+2=2(k+1)2.于是
=
,
=
,所以
=
,由此可知当dk=2k时,对任意k∈N*,a2k,a2k+1,a2k+2成等比数列.
(Ⅱ)由题意可知,
=
=
,从而
=
,k∈N*
因此,a2k=
.
.a2=
.
.2=2k2.a2k+1=a2k.
=2k(k+1),k∈N*
再分情况讨论求解.
| a2k+1 |
| a2k |
| k+1 |
| k |
| a2k+2 |
| a2k+1 |
| k+1 |
| k |
| a2k+2 |
| a2k+1 |
| a2k+1 |
| a2k |
(Ⅱ)由题意可知,
| a2k+2 |
| a2k+1 |
| a2k+1 |
| a2k |
| k+1 |
| k |
| a2k+2 |
| a2k |
| (k+1)2 |
| k2 |
因此,a2k=
| a2k |
| a2k-2 |
| a2k-2 |
| a2k-4 |
| a4 |
| a2 |
| k2 |
| (k-1)2 |
| (k-1)2 |
| (k-2)2 |
| 22 |
| 12 |
| k+1 |
| k |
再分情况讨论求解.
解答:(Ⅰ)证明:由题设,可得a2k+1-a2k-1=4k,k∈N*.
所以a2k+1-a1=(a2k+1-a2k-1)+(a2k-1-a2k-3)++(a3-a1)
=4k+4(k-1)++4×1
=2k(k+1)
由a1=0,得a2k+1=2k(k+1),从而a2k=a2k+1-2k=2k2,a2k+2=2(k+1)2.
于是
=
,
=
,所以
=
.
所以dk=2k时,对任意k∈N*,a2k,a2k+1,a2k+2成等比数列.
(Ⅱ)证明:a1=0,a2=2,可得a3=4,从而q1=
=2,
=1.由(Ⅰ)有
=1+k-1=k,得qk=
,k∈N*
所以
=
=
,从而
=
,k∈N*
因此,a2k=
.
.a2=
.
.2=2k2.a2k+1=a2k.
=2k(k+1),k∈N*
以下分两种情况进行讨论:
(1)当n为偶数时,设n=2m(m∈N*(2))
若m=1,则2n-
=2.
若m≥2,则
=
+
=
+
=2m+
[
+
]=2m+
[2+
(
-
)]
=2m+2(m-1)+
(1-
)=2n-
-
所以2n-
=
+
,从而
<2n-
<2,n=4,6,8
(2)当n为奇数时,设n=2m+1(m∈N*)
=
+
2=4m-
-
+
=4m+
-
=2n-
-
所以2n-
=
+
,
从而
<2n-
<2,n=3,5,7
综合(1)(2)可知,对任意n≥2,n∈N*,有
<2n-
≤2
所以a2k+1-a1=(a2k+1-a2k-1)+(a2k-1-a2k-3)++(a3-a1)
=4k+4(k-1)++4×1
=2k(k+1)
由a1=0,得a2k+1=2k(k+1),从而a2k=a2k+1-2k=2k2,a2k+2=2(k+1)2.
于是
| a2k+1 |
| a2k |
| k+1 |
| k |
| a2k+2 |
| a2k+1 |
| k+1 |
| k |
| a2k+2 |
| a2k+1 |
| a2k+1 |
| a2k |
所以dk=2k时,对任意k∈N*,a2k,a2k+1,a2k+2成等比数列.
(Ⅱ)证明:a1=0,a2=2,可得a3=4,从而q1=
| 4 |
| 2 |
| 1 |
| q1-1 |
| 1 |
| qk-1 |
| k+1 |
| k |
所以
| a2k+2 |
| a2k+1 |
| a2k+1 |
| a2k |
| k+1 |
| k |
| a2k+2 |
| a2k |
| (k+1)2 |
| k2 |
因此,a2k=
| a2k |
| a2k-2 |
| a2k-2 |
| a2k-4 |
| a4 |
| a2 |
| k2 |
| (k-1)2 |
| (k-1)2 |
| (k-2)2 |
| 22 |
| 12 |
| k+1 |
| k |
以下分两种情况进行讨论:
(1)当n为偶数时,设n=2m(m∈N*(2))
若m=1,则2n-
| n |
| k=2 |
| k2 |
| ak |
若m≥2,则
| n |
| k=2 |
| k2 |
| ak |
| m |
| k=1 |
| (2k)2 |
| a2k |
| m-1 |
| k=1 |
| (2k+1)2 |
| a2k+1 |
| m |
| k=1 |
| 4k2 |
| 2k2 |
| m-1 |
| k=1 |
| 4k2+4k+1 |
| 2k(k+1) |
| m-1 |
| k=1 |
| 4k2+4k |
| 2k(k+1) |
| 1 |
| 2k(k+1) |
| m-1 |
| k=1 |
| 1 |
| 2 |
| 1 |
| k |
| 1 |
| k+1 |
=2m+2(m-1)+
| 1 |
| 2 |
| 1 |
| m |
| 3 |
| 2 |
| 1 |
| n. |
所以2n-
| n |
| k=2 |
| k2 |
| ak |
| 3 |
| 2 |
| 1 |
| n |
| 3 |
| 2 |
| n |
| k=2 |
| k2 |
| ak |
(2)当n为奇数时,设n=2m+1(m∈N*)
| n |
| k=2 |
| k2 |
| ak |
| 2m |
| k=2 |
| k2 |
| ak |
| (2m+1) |
| a2m+1 |
| 3 |
| 2 |
| 1 |
| 2m |
| (2m+1)2 |
| 2m(m+1) |
| 1 |
| 2 |
| 1 |
| 2(m+1) |
| 3 |
| 2 |
| 1 |
| n+1 |
所以2n-
| n |
| k=2 |
| k2 |
| ak |
| 3 |
| 2 |
| 1 |
| n+1 |
从而
| 3 |
| 2 |
| n |
| k=2 |
| k2 |
| ak |
综合(1)(2)可知,对任意n≥2,n∈N*,有
| 3 |
| 2 |
| n |
| k=2 |
| k2 |
| ak |
点评:本题主要考查等差数列的定义及通项公式,前n项和公式、等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法.
练习册系列答案
相关题目