题目内容
已知
【答案】分析:要求
的范围,可先将
用
和
表示,再根据
结合不等式的性质解决问题
解答:解:令
=a•
+b•
即
即
解得
∵
≤
≤
,



∴
≤

点评:由a<f1(x1,y1)<b,c<f2(x1,y1)<d,求g(x1,y1)的取值范围,可利用待定系数法解决,即设g(x1,y1)=pf1(x1,y1)+qf2(x1,y1),用恒等变形求得p,q,再利用不等式的性质求得 g(x1,y1)的范围.此外,本例也可用线性规划的方法来求解.
解答:解:令
即
即
解得
∵
∴
点评:由a<f1(x1,y1)<b,c<f2(x1,y1)<d,求g(x1,y1)的取值范围,可利用待定系数法解决,即设g(x1,y1)=pf1(x1,y1)+qf2(x1,y1),用恒等变形求得p,q,再利用不等式的性质求得 g(x1,y1)的范围.此外,本例也可用线性规划的方法来求解.
练习册系列答案
相关题目