题目内容
1.函数f(x)=x-1-2sinπx的所有零点之和等于5.分析 由f(x)=x-1-2sinπx=0得x-1=2sinπx,分别作出函数y=x-1和y=2sinπx的图象,利用对称性结合数形结合进行求解即可.
解答
解:由f(x)=x-1-2sinπx=0得x-1=2sinπx,
分别作出函数y=x-1和y=2sinπx的图象如图:
则两个函数都关于点(1,0)对称,
由图象知,两个函数共有5个交点,其中x=1是一个零点,
另外4个零点关于点(1,0)对称,
设对称的两个点的横坐标分别为x1,x2,
则x1+x2=2×1=2,
∴5个交点的横坐标之和为2+2+1=5.
故答案为:5.
点评 本题主要考查函数交点个数以及数值的计算,根据函数图象的性质,利用数形结合是解决此类问题的关键,综合性较强.
练习册系列答案
相关题目
12.已知数列{an}中a1=1,关于x的方程x2-an+1•tan(cosx)+(2an+1)•tan1=0有唯一解,设bn=nan,数列{bn}的前n项和为Sn,则S9=( )
| A. | 8143 | B. | 8152 | C. | 8146 | D. | 8149 |
6.设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(|φ|<$\frac{π}{2}$)的图象可以由g(x)=2$\sqrt{2}$sinxcosx的图象向x轴负方向平移$\frac{π}{4}$个单位得到,则φ的值为( )
| A. | -$\frac{π}{8}$ | B. | 0 | C. | $\frac{π}{8}$ | D. | $\frac{π}{4}$ |
13.已知点A(4,3),P是双曲线x2-y2=2右支上一点,F为双曲线的右焦点,则|PA|+|PF|的最小值是( )
| A. | $2\sqrt{5}-3$ | B. | $3\sqrt{5}-2\sqrt{2}$ | C. | $3\sqrt{2}+2$ | D. | $2\sqrt{5}+\sqrt{2}$ |
10.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天涨停,之后两天时间又跌回到原价,若这两天此股票股价的平均每天下跌的百分率为x,则x满足的方程是( )
| A. | 1-2x=$\frac{9}{10}$ | B. | 1-2x=$\frac{10}{11}$ | C. | (1-x)2=$\frac{9}{10}$ | D. | (1-x)2=$\frac{10}{11}$ |