题目内容
设全集I={2,3,a2+2a-3},A={2,|a+1|},?IA={5},M={x|x=log2|a|},则集合M的所有子集是
______.
∵A∪(?IA)=I,
∴{2,3,a2+2a-3}={2,5,|a+1|},
∴|a+1|=3,且a2+2a-3=5,
解得a=-4或a=2.
∴M={log22,log2|-4|}={1,2}.
故答案为:∅、{1}、{2}、{1,2}
∴{2,3,a2+2a-3}={2,5,|a+1|},
∴|a+1|=3,且a2+2a-3=5,
解得a=-4或a=2.
∴M={log22,log2|-4|}={1,2}.
故答案为:∅、{1}、{2}、{1,2}
练习册系列答案
相关题目