题目内容
已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=2,则:
+
+
+
+…+
=______
| f(2) |
| f(1) |
| f(4) |
| f(3) |
| f(6) |
| f(5) |
| f(8) |
| f(7) |
| f(2006) |
| f(2005) |
∵f(p+q)=f(p)f(q),
∴f(p+1)=f(p)f(1)即
=f(1)=2,
∴
=2,
=2…
=2
即
+
+
+
+…+
=2×1003=2006
故答案为:2006
∴f(p+1)=f(p)f(1)即
| f(p+1) |
| f(p) |
∴
| f(2) |
| f(1) |
| f(4) |
| f(3) |
| f(2006) |
| f(2005) |
即
| f(2) |
| f(1) |
| f(4) |
| f(3) |
| f(6) |
| f(5) |
| f(8) |
| f(7) |
| f(2006) |
| f(2005) |
故答案为:2006
练习册系列答案
相关题目