题目内容
已知函数f(x)满足f(x+y)=f(x)f(y),(x,y∈R)且f(1)=
.
(1)若n∈N*时,求f(n)的表达式;
(2)设bn=
(n∈N*),sn=b1+b2+…+bn,求
+
+…+
.
| 1 |
| 2 |
(1)若n∈N*时,求f(n)的表达式;
(2)设bn=
| nf(n+1) |
| f(n) |
| 1 |
| s1 |
| 1 |
| s2 |
| 1 |
| sn |
分析:(1)在等式中令x=n,y=1,得f(n+1)=f(n)f(1),即
=f(1)=
,可判断{f(n)}为等比数列,从而可求通项公式;
(2)由(1)易求bn,利用等差数列求和公式可得sn,
,利用裂项相消法可求得结果;
| f(n+1) |
| f(n) |
| 1 |
| 2 |
(2)由(1)易求bn,利用等差数列求和公式可得sn,
| 1 |
| Sn |
解答:解:(1)∵f(x)满足f(x+y)=f(x)f(y),f(1)=
,
∴f(n+1)=f(n)f(1),即
=f(1)=
,
∴{f(n)}为首项为
,公比为
的等比数列,
∴f(n)=(
)(
)n-1=
;
(2)∵
=
,∴bn=
=
,
∴sn=b1+b2+…+bn=
×
=
,
∴
=
=4(
-
),
∴
+
+…+
=4(1-
+
-
+…+
-
)=
.
| 1 |
| 2 |
∴f(n+1)=f(n)f(1),即
| f(n+1) |
| f(n) |
| 1 |
| 2 |
∴{f(n)}为首项为
| 1 |
| 2 |
| 1 |
| 2 |
∴f(n)=(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2n |
(2)∵
| f(n+1) |
| f(n) |
| 1 |
| 2 |
| nf(n+1) |
| f(n) |
| n |
| 2 |
∴sn=b1+b2+…+bn=
| 1 |
| 2 |
| n(n+1) |
| 2 |
| n(n+1) |
| 4 |
∴
| 1 |
| sn |
| 4 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 1 |
| s1 |
| 1 |
| s2 |
| 1 |
| sn |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 4n |
| n+1 |
点评:本题考查数列求和、等比数列等差数列的通项公式,裂项相消法对数列求和高考考查的重点内容,应熟练掌握.
练习册系列答案
相关题目