题目内容

以双曲线-=1的焦点为顶点,顶点为焦点的椭圆方程是   
【答案】分析:先求出双曲线的顶点和焦点,从而得到椭圆的焦点和顶点,进而得到椭圆方程.
解答:解:双曲线 的顶点为(2,0)和(-2,0),焦点为(-4,0)和(4,0).
∴椭圆的焦点坐标是(2,0)和(-2,0),顶点为(-4,0)和(4,0).
∴椭圆方程为 +=1.
故答案为:+=1.
点评:本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网