题目内容
三棱锥中,,分别为,的中点,记三棱锥的体积为,的体积为,则 .
(本题满分12分)
在平面直角坐标系中,已知动圆过点,且被轴所截得的弦长为4.
(Ⅰ) 求动圆圆心的轨迹的方程;
(Ⅱ) 过点分别作斜率为的两条直线,交于两点(点异于点),若,且直线与圆相切,求△的面积.
已知数列的通项公式.
当取得最大值时,的值为( )
A. B. C. D.
一个容量为n的样本,分成若干组,已知某组的频数和频率分别为30和0.25,则n等于_________.
已知为第二象限角,,则的值等于
A. B. C. D.
乒乓球台面被网分成甲、乙两部分,如图,
甲上有两个不相交的区域,乙被划分为两个不相交的区域.某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在上记3分,在上记1分,其它情况记0分.对落点在上的来球,小明回球的落点在上的概率为,在上的概率为;对落点在上的来球,小明回球的落点在上的概率为,在上的概率为.假设共有两次来球且落在上各一次,小明的两次回球互不影响.求:
(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率;
(Ⅱ)两次回球结束后,小明得分之和的分布列与数学期望.
在平面直角坐标系中,倾斜角为的直线与曲线交于两点,则,以坐标原点为极点,轴正半轴为极轴建立极坐标系,则直线的极坐标方程是
已知数列和满足.若为等比数列,且
(1)求与;
(2)设。记数列的前项和为.
(i)求;
(ii)求正整数,使得对任意,均有.