题目内容
【题目】已知函数
,
(1)已知
为自然对数的底数,求函数
在
处的切线方程;
(2)当
时,方程
有唯一实数根,求
的取值范围.
【答案】(1)
(2) ![]()
【解析】
(1)求得函数的导数
,得到
,
,利用直线的点斜式方程,即可求解切线的方程;
(2)当
时,方程
,即
,令
,求得
,令
,分类讨论利用导数求得函数的单调性与最值,即可求解.
(1)由题意,函数
,定义域
,
则
,所以
,![]()
函数
在
处的切线方程为
,整理得
,
即函数
在
处的切线方程
.
(2)当
时,方程
,即
,
令
,有
,
,
令
,![]()
因为
,所以
在
单调递减,
①当
即
时,
,即
在
单调递减,所以
,方程
无实根.
②当
时,即
时,存在
,使得
时,
,即
单调递增;
时,
,即
单调递减; 因此
,
取
,则
,
令
,
,
由
,则
,
,所以
,即
在
时单调递减,
所以
.
故存在
,
.
综上,
的取值范围为
.
练习册系列答案
相关题目
【题目】全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续
天监测空气质量指数(
),数据统计如下:
空气质量指数( | 0-50 | 51-100 | 101-150 | 151-200 | 201-250 |
空气质量等级 | 空气优 | 空气良 | 轻度污染 | 中度污染 | 重度污染 |
天数 | 20 | 40 |
| 10 | 5 |
(1)根据所给统计表和频率分布直方图中的信息求出
的值,并完成频率分布直方图;
![]()
(2)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件
“两天空气都为良”发生的概率.