题目内容
f(x)为定义在R上的函数,f(1)=1,对任意x1,x2∈R,总有f(x1+x2)=f(x1)+f(x2)+1恒成立
(1)对任意n∈N*,有an=
,bn=f(
)+1,求Tn=
+
+…+
(2)设F(n)=an+1+an+2+…+a2n,若
a2-
a+
≤F(n)对于一切n≥2且n∈N*恒成立,求a的取值范围.
(1)对任意n∈N*,有an=
| 1 |
| f(n) |
| 1 |
| 2n+1 |
| b1 |
| a1 |
| b2 |
| a2 |
| bn |
| an |
(2)设F(n)=an+1+an+2+…+a2n,若
| 1 |
| 4 |
| 1 |
| 3 |
| 12 |
| 35 |
分析:(1)利用条件,结合叠加法,即可求数列的通项,再利用错位相减法,即可求和;
(2)确定F(n)=an+1+an+2+…+a2n,单调递增,可得F(n)min=F(2)=
,
a2-
a+
≤F(n)对于一切n≥2且n∈N*恒成立,等价于
a2-
a+
≤
,由此可确定a的取值范围.
(2)确定F(n)=an+1+an+2+…+a2n,单调递增,可得F(n)min=F(2)=
| 12 |
| 35 |
| 1 |
| 4 |
| 1 |
| 3 |
| 12 |
| 35 |
| 1 |
| 4 |
| 1 |
| 3 |
| 12 |
| 35 |
| 12 |
| 35 |
解答:解:(1)∵f(x1+x2)=f(x1)+f(x2)+1,
∴f(n)=f(n-1)+f(1)+1
f(n-1)=f(n-2)+f(1)+1
…
f(2)=f(1)+f(1)+1
∴f(n)=nf(1)+n-1=2n-1
∴an=
=
,bn=f(
)+1=
∴Tn=
+
+…+
=1•
+3•
+…+(2n-1)•
∴
Tn=1•
+3•
+…+(2n-1)•
两式相减,可得
Tn=1•
+2•
+…+2•
-(2n-1)•
∴Tn=3-
;
(2)∵F(n)=an+1+an+2+…+a2n,∴F(n+1)=an+2+an+2+…+a2n+2,
∴F(n+1)-F(n)=a2n+1+a2n+2-an+1=
+
-
=
>0
∴F(n)=an+1+an+2+…+a2n,单调递增,
∴F(n)min=F(2)=
∵
a2-
a+
≤F(n)对于一切n≥2且n∈N*恒成立,
∴
a2-
a+
≤
∴0≤a≤
.
∴f(n)=f(n-1)+f(1)+1
f(n-1)=f(n-2)+f(1)+1
…
f(2)=f(1)+f(1)+1
∴f(n)=nf(1)+n-1=2n-1
∴an=
| 1 |
| f(n) |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2n |
∴Tn=
| b1 |
| a1 |
| b2 |
| a2 |
| bn |
| an |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
∴
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n+1 |
两式相减,可得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
∴Tn=3-
| 3+2n |
| 2n |
(2)∵F(n)=an+1+an+2+…+a2n,∴F(n+1)=an+2+an+2+…+a2n+2,
∴F(n+1)-F(n)=a2n+1+a2n+2-an+1=
| 1 |
| 4n+1 |
| 1 |
| 4n+3 |
| 1 |
| 2n+1 |
| 1 |
| (4n+1)(4n+3) |
∴F(n)=an+1+an+2+…+a2n,单调递增,
∴F(n)min=F(2)=
| 12 |
| 35 |
∵
| 1 |
| 4 |
| 1 |
| 3 |
| 12 |
| 35 |
∴
| 1 |
| 4 |
| 1 |
| 3 |
| 12 |
| 35 |
| 12 |
| 35 |
∴0≤a≤
| 4 |
| 3 |
点评:本题考查数列的通项与求和,考查数列与不等式的联系,确定数列的通项,正确求和是关键.
练习册系列答案
相关题目