题目内容

设x,y满足
x24
+y2=1
,则x-2y的最大值为
 
分析:可设出椭圆
x2
4
+y2=1
参数方程,转化为三角函数,利用三角函数的有界性求x-2y最大值.
解答:解:x,y满足
x2
4
+y2=1

则参数方程是
x=2cosθ
y=sinθ
,θ∈R
则x-2y=2cosθ-2sinθ=-2
2
sin(θ-
π
4

∵θ∈R
∴-2
2
≤2
2
sin(θ-
π
4
)≤2
2

∴则x-2y的最大值为:2
2

故答案为:2
2
点评:此类题常用圆的标准方程将求最值的问题转化到三角函数中用三角函数的有界性求最值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网