题目内容

精英家教网如图为函数f(x)=ax3+bx2+cx+d的图象,f′(x)为函数f(x)的导函数,则不等式x•f′(x)<0的解集为
 
分析:先从原函数的极值点处得出导数的零点,再利用导函数是二次函数的特点,结合二次函数的图象,即可解出不等式x•f′(x)<0的解集.
解答:精英家教网解:由图可知:
±
3
是函数f(x)=ax3+bx2+cx+d的两个极值点,且a>0
即±
3
是导函数f′(x)的两个零点,
导函数的图象如图,
由图得:
不等式x•f′(x)<0的解集为:
(-∞,-
3
)∪(0,
3
)

故答案为:(-∞,-
3
)∪(0,
3
)
点评:本小题主要考查函数的图象、一元二次不等式的解法、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网