题目内容
19.已知平面向量$\overrightarrow{m}$=(1,$\sqrt{3}$),$\overrightarrow{n}$=(a,3)(a∈R),$\overrightarrow{p}$=($\sqrt{3}$,1),且$\overrightarrow{n}$⊥$\overrightarrow{p}$,则$\overrightarrow{m}$与$\overrightarrow{n}$的夹角是( )| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
分析 由题意 $\overrightarrow{n}•\overrightarrow{p}$=$\sqrt{3}$a+$\sqrt{3}$=0,求得a=-$\sqrt{3}$.设$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为θ,则由cosθ=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{2}$,求得θ的值.
解答 解:向量$\overrightarrow{m}$=(1,$\sqrt{3}$),$\overrightarrow{n}$=(a,3)(a∈R),$\overrightarrow{p}$=($\sqrt{3}$,1),且$\overrightarrow{n}$⊥$\overrightarrow{p}$,
∴$\overrightarrow{n}•\overrightarrow{p}$=$\sqrt{3}$a+$\sqrt{3}$=0,求得a=-$\sqrt{3}$.
设$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为θ,则由cosθ=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{-\sqrt{3}+3\sqrt{3}}{2•2\sqrt{3}}$=$\frac{1}{2}$,
∴θ=60°.
点评 本题主要考查两个向量垂直的性质,用数量积表示两个向量的夹角,属于基础题.
练习册系列答案
相关题目
10.将函数y=sin(x-$\frac{π}{3}$)的图象上所有点的横坐标伸长到原来的3倍(纵坐标不变),再将所得的图象向左平移$\frac{π}{2}$个单位,得到的图象对应的解析式是( )
| A. | y=sin($\frac{1}{3}$x+$\frac{π}{6}$) | B. | y=sin(3x+$\frac{π}{6}$) | C. | y=sin($\frac{1}{3}$x-$\frac{π}{6}$) | D. | y=sin(3x-$\frac{π}{6}$) |
7.已知f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤1}\\{-lo{g}_{3}x,x>1}\end{array}\right.$,g(x)=|x-k|+|x-1|,若对任意的x1,x2∈R,都有f(x1)≤g(x2)成立,则实数k的取值范围为( )
| A. | (-$∞,\frac{3}{4}$)∪($\frac{5}{4},+∞$) | B. | (-$∞,\frac{3}{4}$]∪[$\frac{5}{4},+∞$) | C. | [$\frac{3}{4},\frac{5}{4}$] | D. | ($\frac{3}{4},\frac{5}{4}$) |
4.设集合M={x|2x2-x-6<0},N={x|0<x≤4},则M∩N等于( )
| A. | (0,2) | B. | (-$\frac{3}{2}$,0) | C. | (-2,3) | D. | (-2,2) |
11.一个几何体的主视图和左视图是两个边长为2的等边三角形,俯视图是直径为2的圆及其圆心,则该几何体的侧面积为( )
| A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | π | D. | 2π |