题目内容

关于平面向量a,b,c,有下列三个命题:
①若a·b=a·c,则b=c;
②若a=(1,k),b=(-2,6),a∥b,则k=-3;
③非零向量a和b满足|a|=|b|=|a-b|,则a与a+b的夹角为30o
(参若a-(1,k),b=(-2,6),a
其中真命题的序号为(    )

A.①② B.①③ C.②③ D.①②③

C

解析试题分析:①当时,不一定相等,故①不正确;②若a∥b,则有,解得,故②正确;③令,则,因为|a|=|b|=|a-b|,所以为正三角形。设以为临边的平行四边形为,因为为正三角形,所以为菱形且。由向量加法的平行四边形法则可知。所以。故③正确。
考点:平面向量的加减法、平行及数量积的计算。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网