题目内容
已知函数
=(
sinx,
cosx-1),
=(2cosx,
cosx+1),f(x)=
•
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)设△ABC的内角A,B,C对边分别为a,b,c,c=
,f(C)=1,
=(sinA,-1)与
=(2,sinB)垂直,求a,b的值.
. |
| a |
| 3 |
| 2 |
. |
| b |
| 2 |
. |
| a |
. |
| b |
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)设△ABC的内角A,B,C对边分别为a,b,c,c=
| 3 |
| m |
| n |
分析:(Ⅰ)由数量积的运算和三角函数的公式可得f(x)=2sin(2x+
),由-
+2kπ≤2x+
≤
+2kπ可得函数的单调递增区间;
(Ⅱ)可得f(C)=2sin(2C+
)=1,进而可得sin(2C+
)=
,由C的范围可得C=
,再由题意可得,∴2sinA-sinB=0,即2a=b,由余弦定理可得c2=a2+b2-2abcos
=a2+b2-ab=3,联立解得即可.
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
(Ⅱ)可得f(C)=2sin(2C+
| π |
| 6 |
| π |
| 6 |
| 1 |
| 2 |
| π |
| 3 |
| π |
| 3 |
解答:解:(Ⅰ)∵f(x)=
•
=2
sinxcosx+(
cosx-1)(
cosx+1)
=
sin2x+2cos2x-1=
sin2x+cos2x=2sin(2x+
)…(2分)
令-
+2kπ≤2x+
≤
+2kπ得-
+kπ≤x≤
+kπ,k∈Z,
∴函数f(x)的单调递增区间为[-
+kπ ,
+kπ],k∈Z…(4分)
(Ⅱ)由题意可知,f(C)=2sin(2C+
)=1,可解得sin(2C+
)=
,
∵0<C<π,∴2C+
=
,或
,解得C=0(舍)或C=
…(6分)
又
=(sinA,-1)与向量
=(2,sinB)垂直,∴2sinA-sinB=0,即2a=b ①…(8分)
又c2=a2+b2-2abcos
=a2+b2-ab=3 ②…(10分)
由①②解得,a=1,b=2.…(12分)
. |
| a |
. |
| b |
| 3 |
| 2 |
| 2 |
=
| 3 |
| 3 |
| π |
| 6 |
令-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
∴函数f(x)的单调递增区间为[-
| π |
| 3 |
| π |
| 6 |
(Ⅱ)由题意可知,f(C)=2sin(2C+
| π |
| 6 |
| π |
| 6 |
| 1 |
| 2 |
∵0<C<π,∴2C+
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
| π |
| 3 |
又
| m |
| n |
又c2=a2+b2-2abcos
| π |
| 3 |
由①②解得,a=1,b=2.…(12分)
点评:本题考查平面向量数量积的运算,涉及三角形的正余弦定理的应用,属中档题.
练习册系列答案
相关题目