题目内容
已知函数f1(x)=3sin(2x-
),f2(x)=4sin(2x+
),则函数f(x)=f1(x)+f2(x)的振幅为( )
| π |
| 3 |
| π |
| 3 |
分析:利用两角和的正弦函数直接化简f(x)为一个角的一个三角函数的形式,即可求出函数的振幅.
解答:解:函数f(x)=f1(x)+f2(x)
=3sin(2x-
)+4sin(2x+
)
=3sin2xcos
-3cos2xsin
+4sin2xcos
+4cos2xsin
=7sin2xcos
+cos2xsin
=
sin2x+
cos2x
=
sin(2x+θ).其中tanθ=
.
所以函数的振幅为
.
故选A.
=3sin(2x-
| π |
| 3 |
| π |
| 3 |
=3sin2xcos
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
=7sin2xcos
| π |
| 3 |
| π |
| 3 |
=
| 7 |
| 2 |
| ||
| 2 |
=
| 13 |
| ||
| 7 |
所以函数的振幅为
| 13 |
故选A.
点评:本题考查两角和的正弦函数的应用,三角函数的恒等变形,考查计算能力.
练习册系列答案
相关题目