题目内容
如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=
,M为BC的中点
(Ⅰ)证明:AM⊥PM ;
(Ⅱ)求二面角P-AM-D的大小;
(Ⅲ)求点D到平面AMP的距离
(Ⅰ)证明:AM⊥PM ;
(Ⅱ)求二面角P-AM-D的大小;
(Ⅲ)求点D到平面AMP的距离
(Ⅰ)证明见解析(Ⅱ)45°(Ⅲ)
(Ⅰ) 取CD的中点E,连结PE、EM、EA.
∵△PCD为正三角形,∴PE⊥CD,PE=PDsin∠PDE=2sin60°=
∵平面PCD⊥平面ABCD, ∴PE⊥平面ABCD (2分)
∵四边形ABCD是矩形
∴△ADE、△ECM、△ABM均为直角三角形
由勾股定理可求得:EM=
,AM=
,AE=3
∴
(4分)
,又
在平面ABCD上射影:
∴∠AME=90°, ∴AM⊥PM (6分)
(Ⅱ)由(Ⅰ)可知EM⊥AM,PM⊥AM
∴∠PME是二面角P-AM-D的平面角 (8分)
∴tan ∠PME=
∴∠PME=45°
∴二面角P-AM-D为45°; (10分)
(Ⅲ)设D点到平面PAM的距离为
,连结DM,则
, ∴
而
(12分)
在
中,由勾股定理可求得PM=
,所以:
∴
即点D到平面PAM的距离为
(14分)
解法2:(Ⅰ) 以D点为原点,分别以直线DA、DC为x轴、y轴,建立如图所示的空间直角坐标系
,
依题意,可得
……2分
∴
(4分)
∴
即
,∴AM⊥PM (6分)
(Ⅱ)设
,且
平面PAM,则
即
∴
, 
取
,得
(8分)
取
,显然
平面ABCD, ∴
结合图形可知,二面角P-AM-D为45°; (10分)
(Ⅲ) 设点D到平面PAM的距离为
,由(Ⅱ)可知
与平面PAM垂直,则
=
即点D到平面PAM的距离为
(14分)
∵△PCD为正三角形,∴PE⊥CD,PE=PDsin∠PDE=2sin60°=
∵平面PCD⊥平面ABCD, ∴PE⊥平面ABCD (2分)
∵四边形ABCD是矩形
由勾股定理可求得:EM=
∴
∴∠AME=90°, ∴AM⊥PM (6分)
(Ⅱ)由(Ⅰ)可知EM⊥AM,PM⊥AM
∴∠PME是二面角P-AM-D的平面角 (8分)
∴tan ∠PME=
∴∠PME=45°
∴二面角P-AM-D为45°; (10分)
(Ⅲ)设D点到平面PAM的距离为
而
在
即点D到平面PAM的距离为
依题意,可得
∴
∴
即
(Ⅱ)设
∴
取
取
结合图形可知,二面角P-AM-D为45°; (10分)
(Ⅲ) 设点D到平面PAM的距离为
即点D到平面PAM的距离为
练习册系列答案
相关题目