题目内容

9.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$不共线,$\overrightarrow{AB}$=$\overrightarrow{a}$+k$\overrightarrow{b}$,$\overrightarrow{AC}$=l$\overrightarrow{a}$+$\overrightarrow{b}$(k、l∈R),且$\overrightarrow{AB}$与$\overrightarrow{AC}$共线,则k、l应满足(  )
A.k+l=0B.k-l=0C.kl+1=0D.kl-1=0

分析 利用共线向量的充要条件列出方程求解即可.

解答 解:向量$\overrightarrow{a}$与$\overrightarrow{b}$不共线,$\overrightarrow{AB}$=$\overrightarrow{a}$+k$\overrightarrow{b}$,$\overrightarrow{AC}$=l$\overrightarrow{a}$+$\overrightarrow{b}$(k、l∈R),且$\overrightarrow{AB}$与$\overrightarrow{AC}$共线,
可得$\overrightarrow{AB}$=m$\overrightarrow{AC}$,
即:$\overrightarrow{a}$+k$\overrightarrow{b}$=ml$\overrightarrow{a}$+m$\overrightarrow{b}$,可得1=ml,k=m
即kl-1=0.
故选:D.

点评 本题考查向量共线的充要条件的判断与应用,基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网