题目内容

如图,点A(- a,0),B)是椭圆上的两点,直线ABy轴交于点C(0,1).

(1)求椭圆的方程;

(2)过点C任意作一条直线PQ与椭圆相交于PQ,求PQ的取值范围.

 


解:(1)由B),C(0,1),得直线BC方程为

    令y = 0,得x = -2,∴a = 2.                               

    将B)代入椭圆方程,得.∴b2 = 2.

    椭圆方程为.                                 

(2)① 当PQx轴垂直时,PQ = ;                     

② 当PQx轴不垂直时,不妨设直线PQy = kx + 1(k≥0),

代入椭圆方程x2 + 2y2 - 4 = 0,得x2 + 2(kx + 1)2 - 4 = 0.

即 (2k2 + 1) x2 + 4kx - 2 = 0.                                  

P(x1y1),Q(x2y2),则

则 | x1 - x2 | = PQ = .          

=.                                     

,在k =时取等号,              

PQ2 = Î(8,9].则PQÎ.      

由①,②得PQ的取值范围是.                

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网